A growing body of evidence suggests that BRAF inhibitors, in addition to their acute tumor growth-inhibitory effects, can also promote immune responses to melanoma. The present study aimed to define the immunologic basis of BRAF-inhibitor therapy using the Braf/Pten model of inducible, autochthonous melanoma on a pure C57BL/6 background. In the tumor microenvironment, BRAF inhibitor PLX4720 functioned by on-target mechanisms to selectively decrease both the proportions and absolute numbers of CD4(+)Foxp3(+) regulatory T cells (Treg) and CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSC), while preserving numbers of CD8(+) effector T cells. In PLX4720-treated mice, the intratumoral Treg populations decreased significantly, demonstrating enhanced apopotosis. CD11b(+) myeloid cells from PLX4720-treated tumors also exhibited decreased immunosuppressive function on a per-cell basis. In accordance with a reversion of tumor immune suppression, tumors that had been treated with PLX4720 grew with reduced kinetics after treatment was discontinued, and this growth delay was dependent on CD8 T cells. These findings demonstrate that BRAF inhibition selectively reverses two major mechanisms of immunosuppression in melanoma and liberates host-adaptive antitumor immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230697PMC
http://dx.doi.org/10.1158/2326-6066.CIR-14-0074DOI Listing

Publication Analysis

Top Keywords

braf inhibition
8
immune suppression
8
autochthonous melanoma
8
cells plx4720-treated
8
cells
5
braf
4
inhibition alleviates
4
alleviates immune
4
suppression murine
4
murine autochthonous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!