CCharPPI web server: computational characterization of protein-protein interactions from structure.

Bioinformatics

Joint BSC-IRB Research Programme in Computational Biology, Department of Life Sciences, Barcelona Supercomputing Center, C/Jordi Girona 29, 08034 Barcelona, Spain.

Published: January 2015

AI Article Synopsis

Article Abstract

Summary: The atomic structures of protein-protein interactions are central to understanding their role in biological systems, and a wide variety of biophysical functions and potentials have been developed for their characterization and the construction of predictive models. These tools are scattered across a multitude of stand-alone programs, and are often available only as model parameters requiring reimplementation. This acts as a significant barrier to their widespread adoption. CCharPPI integrates many of these tools into a single web server. It calculates up to 108 parameters, including models of electrostatics, desolvation and hydrogen bonding, as well as interface packing and complementarity scores, empirical potentials at various resolutions, docking potentials and composite scoring functions.

Availability And Implementation: The server does not require registration by the user and is freely available for non-commercial academic use at http://life.bsc.es/pid/ccharppi.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btu594DOI Listing

Publication Analysis

Top Keywords

web server
8
protein-protein interactions
8
ccharppi web
4
server computational
4
computational characterization
4
characterization protein-protein
4
interactions structure
4
structure summary
4
summary atomic
4
atomic structures
4

Similar Publications

HemaScope: A Tool for Analyzing Single-cell and Spatial Transcriptomics Data of Hematopoietic Cells.

Genomics Proteomics Bioinformatics

January 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.

View Article and Find Full Text PDF

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

SARAh - web representational analysis.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, England.

The online software server SARAh-webRepresentational Analysis is introduced. It replaces the previous Windows-versions of SARAh-Representational analysis and SARAh-Refine, and related theory. The new suite of web apps carries out a range representational analysis calculations, including those based on the works of Kovalev, Bertaut, Izyumov, Bradley, Cracknell, Birman and Landau, for magnetic structures and electronic properties within frameworks based on the crystallographic space groups and point groups.

View Article and Find Full Text PDF

PRA-MutPred: Predicting the Effect of Point Mutations in Protein-RNA Complexes Using Structural Features.

J Chem Inf Model

January 2025

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.

Interactions between proteins and RNAs are essential for the proper functioning of cells, and mutations in these molecules may lead to diseases. These protein mutations alter the strength of interactions between the protein and RNA, generally described as binding affinity (Δ). Hence, the affinity change upon mutation (ΔΔ) is an important parameter for understanding the effect of mutations in protein-RNA complexes.

View Article and Find Full Text PDF

PUR-GEN: A web server for automated generation of polyurethane fragment libraries.

Comput Struct Biotechnol J

December 2024

Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.

The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!