In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were exfoliated in 2-methoxyethanol by the lithium intercalation method and were deposited as nano-floating gates between polystyrene and poly(methyl methacrylate), used as bilayered gate dielectrics, by a simple spin-coating and low temperature (<150 °C) process. In the developed OFET memory devices, electrons could be trapped/detrapped in the MoS2 nano-floating gates by modulating the charge carrier density in the active channel through gate bias control. Optimal memory characteristics were achieved by controlling the thickness and concentration of few-layered MoS2 nanoflakes, and the best device showed reliable non-volatile memory properties: a sufficient memory window of ∼23 V, programming-reading-erasing cycling endurance of >10(2) times, and most importantly, quasi-permanent charge-storing characteristics, i.e., a very long retention time (longer than the technological requirement of commercial memory devices (>10 years)). In addition, we successfully developed multilevel memory cells (2 bits per cell) by controlling the gate bias magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr03448aDOI Listing

Publication Analysis

Top Keywords

multilevel memory
8
memory devices
8
stable charge
4
charge storing
4
storing two-dimensional
4
two-dimensional mos2
4
mos2 nanoflake
4
nanoflake floating
4
floating gates
4
gates multilevel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!