The Kaiso protein was originally described as a BTB/POZ zinc-finger transcription factor and a p120-catenin-binding partner. It is a DNA methylation-dependent transcriptional repressor, but its biological role in mice is still unknown. Here, we characterized a Kaiso-specific antibody by examining Kaiso protein distribution by immunofluorescence microscopy in the following tissues and cell types of adult mice: skin, small intestine, mammary glands, urinary bladder, and others. This study is the first to demonstrate that Kaiso is expressed in most of the examined tissues. Kaiso was localized to the nucleus in almost all tissues. However, it was primarily cytoplasmic in photoreceptor cells in the eye (rods and cones). Furthermore, Kaiso is expressed in a specific subset of male germ cells that are characterized by partly positive PLZF and Bmi-1 staining. In this study, we present the first confirmation of the reliability of expression data using Kaiso knockout mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00418-014-1261-7 | DOI Listing |
Epigenetics Chromatin
December 2024
Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia.
Background: There has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro.
View Article and Find Full Text PDFEpigenetics Chromatin
June 2024
Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
Background: Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization.
View Article and Find Full Text PDFActa Neuropathol Commun
May 2024
Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis.
View Article and Find Full Text PDFAnn Neurol
May 2024
Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR.
Objective: Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia.
CP190 is a co-factor in many architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!