The design and synthesis of a polyphenylene dendrimer (PPD 3) with discrete binding sites for lipophilic guest molecules and characteristic surface patterns is presented. Its semi-rigidity in combination with a precise positioning of hydrophilic and hydrophobic groups at the periphery yields a refined architecture with lipophilic binding pockets that accommodate defined numbers of biologically relevant guest molecules such as fatty acids or the drug doxorubicin. The size, architecture, and surface textures allow to even penetrate brain endothelial cells that are a major component of the extremely tight blood-brain barrier. In addition, low to no toxicity is observed in in vivo studies using zebrafish embryos. The unique PPD scaffold allows the precise placement of functional groups in a given environment and offers a universal platform for designing drug transporters that closely mimic many features of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201400291DOI Listing

Publication Analysis

Top Keywords

polyphenylene dendrimer
8
guest molecules
8
dendrimer drug
4
drug transporter
4
transporter precisely
4
precisely positioned
4
positioned amphiphilic
4
amphiphilic surface
4
surface patches
4
patches design
4

Similar Publications

The light-harvesting excitonic properties of poly(phenylene ethynylene) (PPE) extended dendrimers (tree-like π-conjugated macromolecules) involve a directional cascade of local excitation energy transfer (EET) processes occurring from the "leaves" (shortest branches) to the "trunk" (longest branch), which can be viewed from a vibronic perspective as a sequence of internal conversions occurring among a connected graph of nonadiabatically coupled locally excited electronic states via conical intersections. The smallest PPE building block that is able to exhibit EET, the asymmetrically meta-substituted PPE oligomer with one acetylenic bond on one side and two parallel ones on the other side (hence, 2-ring and 3-ring para-substituted pseudo-fragments), is a prototype and the focus of the present work. From linear-response time-dependent density functional theory electronic-structure calculations of the molecule as regards its first two nonadiabatically coupled, optically active, singlet excited states, we built a (1 + 2)-state-8-dimensional vibronic-coupling Hamiltonian model for running subsequent multiconfiguration time-dependent Hartree wavepacket relaxations and propagations, yielding both steady-state absorption and emission spectra as well as real-time dynamics.

View Article and Find Full Text PDF

NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations.

J Chem Theory Comput

August 2023

Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.

View Article and Find Full Text PDF

1,3-Bis(phenylethynyl)benzene is the primary chromophore of the light-harvesting polyphenylene ethynylene (PPE) dendrimers. It is experimentally known to share the same absorption spectrum as its pair of diphenylacetylene (aka. tolane) meta-substituted branches yet exhibits an unusual Stokes shift of about 2000 cm with respect to its band origin (corresponding to the loss of one vibrational quantum within the antisymmetric acetylenic stretching) in its emission spectrum.

View Article and Find Full Text PDF

Synthesizing metal clusters with a specific number of atoms on a preparative scale for studying advanced properties is still a challenge. The dendrimer templated method is powerful for synthesizing size or atomicity controlled nanoparticles. However, not all atomicity is accessible with conventional dendrimers.

View Article and Find Full Text PDF

Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a "layer-by-layer" extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!