Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes.

Environ Technol

a College of Architecture and Environment, Sichuan University, Chengdu 610065 , People's Republic of China.

Published: October 2015

Ship-borne ballast water contributes significantly to the transfer of non-indigenous species across aquatic environments. To reduce the risk of bio-invasion, ballast water should be treated before discharge. In this study, the efficiencies of several conventional and advanced oxidation processes were investigated for potential ballast water treatment, using a marine dinoflagellate species, Scripsiella trochoidea, as the indicator organism. A stable and consistent culture was obtained and treated by ultraviolet (UV) light, ozone (O3), hydrogen peroxide (H2O2), and their various combinations. UV apparently inactivated the cells after only 10 s of irradiation, but subsequently photo-reactivation of the cells was observed for all methods involving UV. O3 exhibited 100% inactivation efficiency after 5 min treatment, while H2O2 only achieved maximum 80% inactivation in the same duration. Combined methods, e.g. UV/O3 and UV/H2O2, were found to inhibit photo-reactivation and improve treatment efficiency to some degree, indicating the effectiveness of using combined treatment processes. The total residual oxidant (TRO) levels of the methods were determined, and the results indicated that UV and O3 generated the lowest and highest TRO, respectively. The synergic effect of combined processes on TRO generation was found to be insignificant, and thus UV/O3 was recommended as a potentially suitable treatment process for ballast water.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2014.960478DOI Listing

Publication Analysis

Top Keywords

ballast water
20
scripsiella trochoidea
8
advanced oxidation
8
oxidation processes
8
ballast
5
water
5
treatment
5
inactivation dinoflagellate
4
dinoflagellate scripsiella
4
trochoidea synthetic
4

Similar Publications

Co-occurrence patterns between Chlorophyta and nucleocytoplasmic large DNA virus in coastal ecosystem, South Korea.

Mar Environ Res

January 2025

Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea. Electronic address:

Nucleocytoplasmic large DNA viruses (NCLDVs) are known to infect phytoplankton and play a significant role in regulating their population dynamics. In this study, we aimed to investigate the co-occurrence patterns between phytoplankton and NCLDVs in the southern coastal ecosystem of South Korea. We collected seawater every month from March 2018 to December 2020 and analyzed the samples using Cytochrome c Oxidase subunit I metabarcoding and metagenomic analyses.

View Article and Find Full Text PDF

Mesozooplankton are critical components of marine ecosystems, acting as key intermediaries between primary producers and higher trophic levels by grazing on phytoplankton and influencing fish populations. They play pivotal roles in the pelagic food web and export production, affecting the biogeochemical cycling of carbon and nutrients. Therefore, accurately modeling and visualizing mesozooplankton community dynamics is essential for understanding marine ecosystem patterns and informing effective management strategies.

View Article and Find Full Text PDF

During surveys worldwide, we collected adult and larval specimens of Pseudopolydora Czerniavsky, 1881 similar to P. achaeta Radashevsky & Hsieh, 2000 and P. rosebelae Radashevsky & Migotto, 2009 far from their type localities in Taiwan and Brazil, respectively.

View Article and Find Full Text PDF

ClO has been ever-increasingly used as an alternative disinfectant to alleviate antibiotic resistance risk in aquaculture. However, the feasibility of ClO disinfection in reducing antibiotic resistance has not been clarified yet. We comparatively explored the aggregation mechanisms and their effect on extracellular DNA (exDNA) partition and settlement in disinfected aquaculture waters and natural waters.

View Article and Find Full Text PDF

Single-cell Raman spectroscopy for rapid detection of bacteria in ballast water and UV treatment evaluation.

Talanta

March 2025

Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China; National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou, 310058, China; Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, 10044, Stockholm, Sweden. Electronic address:

Article Synopsis
  • The study addresses the issue of alien species invasion in marine ecosystems caused by ship ballast water, a major avenue for species transfer due to global trade.
  • It developed a confocal Raman microscopic imaging (CRMI) system with advanced machine learning to accurately identify various bacterial types in ballast water, achieving high precision in detection.
  • Additionally, the research evaluated the effectiveness of UV treatment on bacteria in ballast water, showing that 10 minutes of UV exposure could fully sterilize the specific bacteria tested, contributing valuable insights for improving ballast water management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!