IL-18 neutralization during alveolar hypoxia improves left ventricular diastolic function in mice.

Acta Physiol (Oxf)

Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway.

Published: February 2015

Aim: In patients, an association exists between pulmonary diseases and diastolic dysfunction of the left ventricle (LV). We have previously shown that alveolar hypoxia in mice induces LV diastolic dysfunction and that mice exposed to hypoxia have increased levels of circulating interleukin-18 (IL-18), suggesting involvement of IL-18 in development of diastolic dysfunction. IL-18 binding protein (IL-18BP) is a natural inhibitor of IL-18. In this study, we hypothesized that neutralization of IL-18 during alveolar hypoxia would improve LV diastolic function.

Methods: Mice were exposed to 10% oxygen for 2 weeks while treated with IL-18BP or vehicle. Cardiac function and morphology were measured using echocardiography, intraventricular pressure measurements and magnetic resonance imaging (MRI). For characterization of molecular changes in the heart, both real-time PCR and Western blotting were performed. ELISA technique was used to measure levels of circulating cytokines.

Results: As expected, exposure to hypoxia-induced LV diastolic dysfunction, as shown by prolonged time constant of isovolumic relaxation (τ). Improved relaxation with IL-18BP treatment was demonstrated by a significant reduction towards control τ values. Decreased levels of phosphorylated phospholamban (P-PLB) in hypoxia, but normalization by IL-18BP treatment suggest a role for IL-18 in regulation of calcium-handling proteins in hypoxia-induced diastolic dysfunction. In addition, MRI showed less increase in right ventricular (RV) wall thickness in IL-18BP-treated animals exposed to hypoxia, indicating an effect on RV hypertrophy.

Conclusion: Neutralization of IL-18 during alveolar hypoxia improves LV diastolic function and partly prevents RV hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apha.12376DOI Listing

Publication Analysis

Top Keywords

diastolic dysfunction
20
alveolar hypoxia
16
il-18
8
hypoxia improves
8
diastolic
8
diastolic function
8
mice exposed
8
exposed hypoxia
8
levels circulating
8
neutralization il-18
8

Similar Publications

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Background: Diabetes has become a global pandemic, posing a sustained threat to human health, primarily due to its associated complications. Left ventricular diastolic dysfunction (LVDD) is a prevalent cardiac complication among patients with diabetes. Since most patients are asymptomatic and lack relevant biomarkers, LVDD has not attracted significant attention from clinicians.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), particularly in patients with type 2 diabetes mellitus (T2DM), is increasingly recognized as a multi-system disease that affects both hepatic and cardiovascular health. This study explores the association between MASLD-related liver fibrosis and cardiac dysfunction, focusing on how liver fibrosis contributes to cardiac remodeling and dysfunction. Cernea 's research highlights the strong correlation between liver fibrosis and changes in left ventricular mass, left atrial dimensions, and systolic and diastolic function in diabetic patients.

View Article and Find Full Text PDF

Left atrial shunting devices: why, what, how, and… when?

Heart Fail Rev

January 2025

Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!