Pre-implantation genetic diagnosis (PGD) is a powerful clinical tool to identify embryos with or at risk of specific genetic diseases before implantation in utero after in vitro fertilization (IVF). PGD is performed on embryo biopsies that are obtained by aspiration of one or two cells from pre-implantation embryos at day 3 or day 5/6 of culture. However this is a traumatic method that cannot be avoided because non-invasive procedures to assess the genetic status of pre-implantation embryos are not available yet. We hypothesize that cell-free nucleic acids, which are released by embryos in the culture medium during the IVF procedure, could be used for genetic screening. To test our hypothesis we will focus first on X-linked disorders because these single-gene diseases due to the presence of defective genes on the X chromosome are dominant in males. Therefore the objective here is to discriminate between female (XX) and male (XY) embryos by detecting Y chromosome-specific sequences in cell-free nucleic acids. Using culture medium from embryos we are able to discriminate between male and female embryos. This opens new avenues for the development of a non-invasive PGD method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2014.08.019 | DOI Listing |
Arch Gynecol Obstet
January 2025
Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada.
Purpose: To examine the association between blastocyst morphology and chromosomal status utilizing pre-implantation genetic testing for aneuploidy (PGT-A).
Methods: A single-center retrospective cohort study including 169 in-vitro fertilization cycles that underwent PGT-A using Next Generation Sequencing (2017-2022). Blastocysts were morphologically scored based on Gardner and Schoolcraft's criteria.
Reprod Fertil Dev
January 2025
Fertility & Research Centre, Discipline of Women health, School of Clinical Medicine and the Royal Hospital for Women, University of New South Wales, Sydney, NSW, Australia.
Pre-implantation genetic testing for aneuploidy (PGT-A) via embryo biopsy helps in embryo selection by assessing embryo ploidy. However, clinical practice needs to consider the invasive nature of embryo biopsy, potential mosaicism, and inaccurate representation of the entire embryo. This creates a significant clinical need for improved diagnostic practices that do not harm embryos or raise treatment costs.
View Article and Find Full Text PDFAust N Z J Obstet Gynaecol
January 2025
Reproductive Services Unit, The Royal Women's Hospital, Parkville, Australia.
Background: Modern assisted reproductive technology (ART), including pre-implantation genetic testing for aneuploidy (PGT-A), has opened new avenues in understanding early embryonic events and has simultaneously raised questions about the impact of ART itself on sex ratios.
Aims: The primary aim was to investigate whether patient demographic characteristics, ovarian stimulation protocols or laboratory characteristics in ART influence sex ratios. The secondary aim was to relate the blastocyst sex ratio (BSR) to the corresponding secondary sex ratio (SSR) in our patient cohort.
Genes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Endocrinology, Sydney Children's Hospital, Randwick, NSW, Australia.
Introduction: Pre-implantation testing (PGT) is often suggested by healthcare professionals (HCP) to parents of children with congenital adrenal hyperplasia (CAH) considering subsequent children. Despite this, some families choose to conceive naturally without genetic testing and intervention. The aims of this study were to explore fertility choices of couples with a child with CAH and the decision making process and perceptions behind these choices, and to explore the families' lived experiences with CAH and the couples' subsequent fertility journey.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!