Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5' rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ(54) and σ(70) consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248820 | PMC |
http://dx.doi.org/10.1128/JB.01997-14 | DOI Listing |
Infect Genet Evol
December 2024
Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India. Electronic address:
Mol Biomed
November 2024
State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
Pseudomonas aeruginosa is a significant opportunistic pathogen, and its complex mechanisms of antibiotic resistance pose a challenge to modern medicine. This literature review explores the advancements made from 1979 to 2024 in understanding the regulatory networks of antibiotic resistance genes in Pseudomonas aeruginosa, with a particular focus on the molecular underpinnings of these resistance mechanisms. The review highlights four main pathways involved in drug resistance: reducing outer membrane permeability, enhancing active efflux systems, producing antibiotic-inactivating enzymes, and forming biofilms.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Chlormequat (CCC) is widely used in agricultural production to increase the crop yield. However, the effects of CCC on transfer of ARGs in agricultural system are still unclear. In this study, using E.
View Article and Find Full Text PDFJ Antibiot (Tokyo)
November 2024
Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
Cefiderocol, a novel siderophore cephalosporin, demonstrates promising in vitro activity against multidrug-resistant Gram-negative bacteria, including carbapenemase-producing strains. Nonetheless, only a few reports are available regarding the acquisition of resistance in clinical settings, primarily due to its recent usage. This study aimed to investigate cefiderocol resistance using an in vitro resistance development model to gain insights into the underlying molecular resistance mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!