Polymeric nanocylinders by combining block copolymer self-assembly and nanoskiving.

ACS Appl Mater Interfaces

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.

Published: September 2014

A new facile fabrication approach to generate polymeric nanostructures is described. Block copolymers containing immiscible segments can self-assemble to generate ordered nanostructures, such as cylinders of one block in a matrix of the other in the bulk, which can then be sectioned on the nanoscale using a microtome (nanoskiving). Dispersing these sections in a selective solvent for the matrix block results in nanocylinders. In one example, we utilized a poly(N,N-dimethylacrylamide)-block-poly(styrene) (PDMA-PS) copolymer containing 36% by volume of PS. This composition was selected as it self-assembles into cylinders of PS in a matrix of PDMA. Following a previously described procedure, the cylinders were aligned using a channel die. The aligned samples were subsequently sectioned using a microtome containing a diamond knife and dispersed in water, a selective solvent for the PDMA matrix, affording PS nanocylinders with a PDMA corona. This technique allows tuning of nanocylinders without the requirement of specialty fabrication equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173745PMC
http://dx.doi.org/10.1021/am504486rDOI Listing

Publication Analysis

Top Keywords

selective solvent
8
polymeric nanocylinders
4
nanocylinders combining
4
block
4
combining block
4
block copolymer
4
copolymer self-assembly
4
self-assembly nanoskiving
4
nanoskiving facile
4
facile fabrication
4

Similar Publications

This study aimed to determine the chromatographic retention and dissociation/protonation constant (pK) values of lapatinib and tamoxifen, key drugs used in metastatic breast cancer treatment, at 37°C using both conventional and green high-performance liquid chromatography (HPLC) methods. Qualitative analysis was conducted on an XTerra C18 column (250 ×4.6 mm I.

View Article and Find Full Text PDF

Solvent Mediated Interfacial Microenvironment Design for High-Performance Electrochemical CO Reduction to C Products.

Small

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.

Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.

View Article and Find Full Text PDF

Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.

View Article and Find Full Text PDF

Preparation of ethynylsulfonamides and study of their reactivity with nucleophilic amino acids.

Org Biomol Chem

January 2025

Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.

The development of covalent drugs, particularly those utilizing Michael acceptors, has garnered significant attention in recent pharmaceutical research due to the ability of such molecules to irreversibly inhibit protein function. This study focusses on the synthesis and evaluation of ethynylsulfonamides, which are predicted to have superior covalent binding ability, metabolic stability, and water solubility compared to traditional amides. We developed a straightforward synthesis method for ethynylsulfonamides and comprehensively evaluated the covalent binding abilities of these compounds using NMR with various nucleophilic amino acids in different solvents.

View Article and Find Full Text PDF

Electrochemistry and Gold Catalysis: Unusual Allies in Redox Mediated Organic Reactions.

Chem Asian J

January 2025

Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto-SP, 14040-903, Brazil.

Devising advanced protocols to avoid harsh oxidants is of paramount interest in gold catalyzed redox reactions. To address this issue, electrochemical oxidation of precatalytic Au complexes to catalytically active Au in situ species has started to emerge as a potential alternative. Such endeavours not only unlocked the possibility of direct anodic oxidation of Au to Au, but also enables stepwise oxidation of Au to Au to Au through the mediation of electro-generated organic radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!