Background: Focal segmental glomerulosclerosis (FSGS) is a glomerular scarring disease diagnosed mostly by kidney biopsy. Since there is currently no diagnostic test that can accurately predict steroid responsiveness in FSGS, prediction of the responsiveness of patients to steroid therapy with noninvasive means has become a critical issue. In the present study urinary proteomics was used as a noninvasive tool to discover potential predictive biomarkers.

Methods: Urinary proteome of 10 patients (n = 6 steroid-sensitive, n = 4 steroid-resistant) with biopsy proven FSGS was analyzed using nano-LC-MS/MS and supervised multivariate statistical analysis was performed.

Results: Twenty one proteins were identified as discriminating species among which apolipoprotein A-1 and Matrix-remodeling protein 8 had the most drastic fold changes being over- and underrepresented, respectively, in steroid sensitive compared to steroid resistant urine samples. Gene ontology enrichment analysis revealed acute inflammatory response as the dominant biological process.

Conclusion: The obtained results suggest a panel of predictive biomarkers for FSGS. Proteins involved in the inflammatory response are shown to be implicated in the responsiveness. As a tool for biomarker discovery, urinary proteomics is especially fruitful in the area of prediction of responsiveness to drugs. Further validation of these biomarkers is however needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236676PMC
http://dx.doi.org/10.1186/1471-2369-15-141DOI Listing

Publication Analysis

Top Keywords

focal segmental
8
segmental glomerulosclerosis
8
multivariate statistical
8
statistical analysis
8
prediction responsiveness
8
urinary proteomics
8
inflammatory response
8
predictive urinary
4
urinary biomarkers
4
biomarkers steroid-resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!