Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

Environ Technol

a Department of Biological Oceanography , NIOZ, Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ Den Hoorn (Texel), The Netherlands.

Published: September 2015

Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2014.951401DOI Listing

Publication Analysis

Top Keywords

ballast water
20
residual ddac
20
psii efficiency
16
water treatment
12
ddac
12
didecyldimethylammonium chloride
8
treatment method
8
25 µl l-1 ddac
8
days dark
8
dark incubation
8

Similar Publications

Mesozooplankton are critical components of marine ecosystems, acting as key intermediaries between primary producers and higher trophic levels by grazing on phytoplankton and influencing fish populations. They play pivotal roles in the pelagic food web and export production, affecting the biogeochemical cycling of carbon and nutrients. Therefore, accurately modeling and visualizing mesozooplankton community dynamics is essential for understanding marine ecosystem patterns and informing effective management strategies.

View Article and Find Full Text PDF

During surveys worldwide, we collected adult and larval specimens of Pseudopolydora Czerniavsky, 1881 similar to P. achaeta Radashevsky & Hsieh, 2000 and P. rosebelae Radashevsky & Migotto, 2009 far from their type localities in Taiwan and Brazil, respectively.

View Article and Find Full Text PDF

ClO has been ever-increasingly used as an alternative disinfectant to alleviate antibiotic resistance risk in aquaculture. However, the feasibility of ClO disinfection in reducing antibiotic resistance has not been clarified yet. We comparatively explored the aggregation mechanisms and their effect on extracellular DNA (exDNA) partition and settlement in disinfected aquaculture waters and natural waters.

View Article and Find Full Text PDF

Single-cell Raman spectroscopy for rapid detection of bacteria in ballast water and UV treatment evaluation.

Talanta

March 2025

Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China; National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou, 310058, China; Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, 10044, Stockholm, Sweden. Electronic address:

Article Synopsis
  • The study addresses the issue of alien species invasion in marine ecosystems caused by ship ballast water, a major avenue for species transfer due to global trade.
  • It developed a confocal Raman microscopic imaging (CRMI) system with advanced machine learning to accurately identify various bacterial types in ballast water, achieving high precision in detection.
  • Additionally, the research evaluated the effectiveness of UV treatment on bacteria in ballast water, showing that 10 minutes of UV exposure could fully sterilize the specific bacteria tested, contributing valuable insights for improving ballast water management.
View Article and Find Full Text PDF

Comparison between ballast water sampling skid and traditional ballast water sampling devices: A case study of ship sampling.

Mar Pollut Bull

January 2025

College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; The Hong Kong University of Science and Technology, 999077, Hong Kong. Electronic address:

With the ratification of the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004, assessing the compliance of ships with ballast water discharge standards has become imperative. To facilitate this task, a sampling skid was developed to collect ballast water samples efficiently in the confined space of a ship. This study compared the sampling performance of the sampling skid, conventional ballast water sampling devices (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!