The DNA base 5-hydroxymethylcytosine (5hmC) is produced by enzymatic oxidation of 5-methylcytosine (5mC) by 5mC oxidases (the Tet proteins). Since 5hmC is recognized poorly by DNA methyltransferases, DNA methylation may be lost at 5hmC sites during DNA replication. In addition, 5hmC can be oxidized further by Tet proteins and converted to 5-formylcytosine and 5-carboxylcytosine, two bases that can be removed from DNA by base excision repair. The completed pathway represents a replication-independent DNA demethylation cycle. However, the DNA base 5hmC is also known to be rather stable and occurs at substantial levels, for example in the brain, suggesting that it represents an epigenetic mark by itself that may regulate chromatin structure and transcription. Focusing on a few well-studied tissues and developmental stages, we discuss the opposing views of 5hmC as a transient intermediate in DNA demethylation and as a modified DNA base with an instructive role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252803 | PMC |
http://dx.doi.org/10.1016/j.ygeno.2014.08.015 | DOI Listing |
In duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).
View Article and Find Full Text PDFDespite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.
View Article and Find Full Text PDFCellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.
View Article and Find Full Text PDFPlant Dis
January 2025
University of Ghana College of Basic and Applied Sciences, Biotechnology Centre, Accra, Greater Accra, Ghana;
African eggplant (Solanum aethiopicum gilo group) is a nutritious vegetable widely commercialized in Ghana. In the 2021 planting season (May-July), collar rot symptoms were observed on African eggplant on a farm at Domeabra, Legon, and Okumaning in the Central (N5° 48' 11″, W1° 26' 48″), Greater Accra (N5° 39' 34″, W0° 11' 34″) and Eastern (N6° 8' 34″, W0° 55' 59″) regions of Ghana, respectively. Disease incidence was 8-15% in the different farms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!