Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152169PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106267PLOS

Publication Analysis

Top Keywords

departures neutral
12
superciliosus clade
12
mitochondrial dna
8
pleistocene demographic
8
demographic history
8
avian species
8
pomatostomus superciliosus
8
neutral equilibrium
8
patterns mitochondrial
8
species
5

Similar Publications

The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles.

View Article and Find Full Text PDF

One hundred years of influenza A evolution.

Theor Popul Biol

October 2024

Department of Science and Environment, Roskilde University, Roskilde, Denmark. Electronic address:

Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A 'nonstructural' (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic "backbone" of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century.

View Article and Find Full Text PDF

This study investigates the relationship between eye-tracking metrics and emotional experiences in the context of cultural landscapes and tourism-related visual stimuli. Fifty-three participants were involved in two experiments: forty-three in the data collection phase and ten in the model validation phase. Eye movements were recorded and the data were analyzed to identify correlations between four eye-tracking metrics-average number of saccades (ANS), total dwell fixation (TDF), fixation count (FC), and average pupil dilation (APD)-and 19 distinct emotional experiences, which were subsequently grouped into three categories: positive, neutral, and negative.

View Article and Find Full Text PDF

Genetic Diversity and Natural Selection of Plasmodium vivax Merozoite Surface Protein 8 in Global Populations.

Infect Genet Evol

August 2024

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China. Electronic address:

Article Synopsis
  • * Findings reveal that PvMSP8 shows significant conservation across populations, with low nucleotide diversity and limited polymorphisms, unlike other P. vivax antigens which are more variable.
  • * The research emphasizes the shared haplotypes among Southeast Asian populations and suggests that the conserved nature of PvMSP8, without mutations in its functional region, makes it a strong candidate for a broad-spectrum malaria vaccine.
View Article and Find Full Text PDF

Porous iron(III) carboxylate metal-organic frameworks (MIL-100; MIL stands for Material of Institute Lavoisier) of submicronic size (nanoMOFs) have attracted a growing interest in the field of drug delivery due to their high drug payloads, excellent entrapment efficiencies, biodegradable character, and poor toxicity. However, only a few studies have dealt with the nanoMOF degradation mechanism, which is key to their biological applications. Complementary methods have been used here to investigate the degradation mechanism of Fe-based nanoMOFs under neutral or acidic conditions and in the presence of albumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!