Intracellular proteolytic pathways have been validated as rational targets in multiple myeloma with the approval of two proteasome inhibitors in this disease, and with the finding that immunomodulatory agents work through an E3 ubiquitin ligase containing Cereblon. Another E3 ligase that could be a rational target is the murine double minute (MDM) 2 protein, which plays a role in p53 turnover. A novel inhibitor of this complex, MI-63, was found to induce apoptosis in p53 wild-type myeloma models in association with activation of a p53-mediated cell death program. MI-63 overcame adhesion-mediated drug resistance, showed anti-tumor activity in vivo, enhanced the activity of bortezomib and lenalidomide, and also overcame lenalidomide resistance. In mutant p53 models, inhibition of MDM2 with MI-63 also activated apoptosis, albeit at higher concentrations, and this was associated with activation of autophagy. When MI-63 was combined with the BH3 mimetic ABT-737, enhanced activity was seen in both wild-type and mutant p53 models. Finally, this regimen showed efficacy against primary plasma cells from patients with newly diagnosed and relapsed/refractory myeloma. These findings support the translation of novel MDM2 inhibitors both alone, and in combination with other novel agents, to the clinic for patients with multiple myeloma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151993PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103015PLOS

Publication Analysis

Top Keywords

mutant p53
12
p53 models
12
multiple myeloma
12
inhibition mdm2
8
wild-type mutant
8
enhanced activity
8
p53
5
myeloma
5
mdm2 ligase
4
ligase induces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!