Revascularization in the early period after transplantation is the key to improving adipocyte survival. Vascular endothelial growth factor (VEGF) is known as the master regulator of angiogenesis. However, consensus is lacking regarding safe and efficient methods for applying VEGF in free fat transplantation in the clinical setting. We constructed calcium alginate (CA) microspheres loaded with VEGF to increase the survival of implanted adipocytes. BALB/c nude mice were used as adipose tissue transplantation receptors. Adipocytes were mixed with CA microspheres loaded with VEGF and implanted subcutaneously into the dorsum of mice. Grafts were harvested at week 3, 6, and 12 after transplantation. We found that the mass and microvascular density of grafts in the VEGF+CA group (CA microspheres loaded with VEGF) were statistically higher than that of other groups in a time-dependent manner. We demonstrated that CA microspheres loaded with VEGF can significantly promote the fat graft neovascularization, thus improving adipocyte survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SAP.0000000000000201 | DOI Listing |
Biomaterials
March 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China. Electronic address:
Due to the inherent limited regenerative capacity of tendons, rendering countermeasures for tendon injury remains challenging. The pathophysiology of tendon healing is complex and contains three sequential phases including inflammation, proliferation and remodeling. Aiming at the treatment of different stages of tendon injury, in our work, an injectable small intestinal submucosa hydrogel/sodium alginate microspheres (SIS/SA) composite co-encapsulating stromal cell derived factor-1α (SDF-1α) and bone morphogenetic protein-12 (BMP-12) was developed for effective tendon regeneration.
View Article and Find Full Text PDFJ Control Release
March 2025
Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany. Electronic address:
Current standard pharmacological treatment of retinal vascular diseases requires frequent intravitreal injection every 4-12 weeks. Active pharmaceutical ingredients (APIs) with better pharmacokinetics (PK), allowing less frequent administrations, remain to be discovered and developed. In preclinical stage mostly small molecule New Chemical Entities (NCEs) and peptides represent promising candidates.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China. Electronic address:
To address the pressing challenges of energy shortages and environmental sustainability, photocatalytic water splitting for hydrogen production has emerged as a promising strategy for solar energy conversion. While semiconductor catalysts exhibit significant potential in photocatalysis, their practical applications are hindered by limitations such as inefficient charge separation and insufficient active sites. Designing and preparing efficient, non-precious co-catalysts is therefore essential.
View Article and Find Full Text PDFEur J Pharm Biopharm
March 2025
Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
Carbohydr Polym
May 2025
Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Materials Science & Engineering Program, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:
Controlled release systems (CRSs) have been sought after as a compelling platform for site-specific delivery of bioactive compounds (BCs), including traditional drugs and food supplements. However, their potential is often hindered by challenges such as non-uniformity and structural instability. This study utilized an electrohydrodynamic (EHD) process to synthesize composites of cellulose nanocrystals (CNCs) (in two forms: colloidal (c) and crosslinked (x)) and alginate (ALG) to produce uniformly shaped hydrogel microspheres (HMs), serving as pH-sensitive CRSs for BC encapsulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!