In an effort to develop novel vitamin D3 analogues, a series of aromatic compounds was synthetized, using efficient Negishi cross coupling between alkenylzinc reagents of the C,D-ring moiety of vitamin D3, and various substituted aromatic halides as A-ring mimics. The study aimed at exploring the influence of the replacement of the original vitamin D3 diene by a styrene unit on the biological activities. Potency in the induction of the differentiation of HL-60 cells for the lead compound 36 was 12 fold less important than calcitriol correlating with a weaker binding affinity for VDR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2014.07.037 | DOI Listing |
Gastroenterol Rep (Oxf)
January 2025
Department of Gastroenterology-Hepatology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
Dysfunction of the vagus nerve has been suggested as a contributing factor in various gastrointestinal disorders, prompting interest in vagus nerve stimulation (VNS) as a non-pharmacological therapy. We performed a systematic review to determine the efficacy of invasive and non-invasive VNS in gastrointestinal disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), functional dyspepsia (FD), functional constipation, gastroesophageal reflux disease, and gastroparesis. We applied a systematic search of the literature in the PubMed, Embase, Web of Science, and Cochrane Library databases in order to identify studies comparing VNS with an adequate control condition (sham stimulation) in patients with gastrointestinal disorders.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
February 2025
Department of Orthopedics, the First Hospital of Huaian City, Nanjing Medical University, Huaian 223300, China.
To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Biochemistry and Molecular Biology, Federal State Budgetary Educational Institution of Higher Education "Siberian State Medical University" of the Ministry of Health of Russia, 634050 Tomsk, Russia.
Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.
Methods: The study involved 45 women with a mean age of 35 ± 4.
Viruses
December 2024
Scientific Research Institute for Biological Safety Problems, Ministry of Health of Kazakhstan, Almaty 080409, Kazakhstan.
The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!