Protein cage nanoparticles are excellent candidates for use as multifunctional delivery nanoplatforms because they are built from biomaterials and have a well-defined structure. A novel protein cage nanoparticle, encapsulin, isolated from thermophilic bacteria Thermotoga maritima, is prepared and developed as a versatile template for targeted delivery nanoplatforms through both chemical and genetic engineering. It is pivotal for multifunctional delivery nanoplatforms to have functional plasticity and versatility to acquire targeting ligands, diagnostic probes, and drugs simultaneously. Encapsulin is genetically engineered to have unusual heat stability and to acquire multiple functionalities in a precisely controlled manner. Hepatocellular carcinoma (HCC) cell binding peptide (SP94-peptide, SFSIIHTPILPL) is chosen as a targeting ligand and displayed on the surface of engineered encapsulin (Encap_loophis42C123) through either chemical conjugation or genetic insertion. The effective and selective targeted delivery of SP94-peptide displaying encapsulin (SP94-Encap_loophis42C123) to HepG2 cells is confirmed by fluorescent microscopy imaging. Aldoxorubicin (AlDox), an anticancer prodrug, is chemically loaded to SP94-Encap_loophis42C123 via thiol-maleimide Michael-type addition, and the efficacy of the delivered drugs is evaluated with a cell viability assay. SP94-Encap_loophis42C123-AlDox shows comparable killing efficacy with that of free drugs without the platform's own cytotoxicity. Functional plasticity and versatility of the engineered encapsulin allow us to introduce targeting ligands, diagnostic probes, and therapeutic reagents simultaneously, providing opportunities to develop multifunctional delivery nanoplatforms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm501066mDOI Listing

Publication Analysis

Top Keywords

delivery nanoplatforms
16
engineered encapsulin
12
protein cage
12
targeted delivery
12
multifunctional delivery
12
genetically engineered
8
cage nanoparticles
8
functional plasticity
8
plasticity versatility
8
targeting ligands
8

Similar Publications

Radiopaque hydrogel-in-liposomes towards theranostic applications for malignant tumors.

Biomed Pharmacother

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

A radiopaque hydrogel-in-liposome (RHL) system was developed for micro-computed tomography (μCT) imaging of tumor tissue and simultaneous delivery of a cytotoxic agent. Iopamidol (IPD) and doxorubicin (DOX) were incorporated as the CT contrast and anti-cancer agents, respectively. The presence of a polyethylene glycol hydrogel core in the liposomes was confirmed via attenuated total reflectance Fourier transform infrared, proton nuclear magnetic resonance, and selective solvent extraction.

View Article and Find Full Text PDF

Atherosclerosis is the leading cause of cardiovascular disease and myocardial infarction. Precise and effective plaque targeting is a major objective for therapeutic outcomes throughout various stages of atherosclerosis. Inspired by the natural recruitment of neutrophils in atherosclerotic plaques, we fabricated a simvastatin (ST)-loaded and neutrophil membrane-cloaked nanoplatform (NNP) for enhancing localized payload delivery and atherosclerosis management.

View Article and Find Full Text PDF

BRD4-targeted photodegradation nanoplatform for light activatable melanoma therapy.

Biomaterials

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China. Electronic address:

The targeted protein degradation (TPD) strategy modulates tumor growth pathways by degrading proteins of interest (POIs) and has reshaped anti-tumor drug research and development. Recently, the emergence of photodegradation-targeting chimeras (PDTACs) and laser irradiation at specific sites enables precise spatiotemporal controllability of TPD. Capitalizing on the advances of PDTACs, herein, we report a nanoplatform for efficiently delivering PDTAC molecule for photodegradation of bromodomain-containing protein 4 (BRD4) proteins, the key activators of oncogenic transcription.

View Article and Find Full Text PDF

Rheumatoid arthritis is a highly prevalent debilitating condition linked to inflammation. The effectiveness of the present therapeutic techniques is constrained; so, there is an urgent requirement for a novel nanoplatform entailing drugs with proven efficacy. The current work highlighted the development of dexamethasone and luteolin co-encapsulated hyalurosomes (LUT-DEX hyalurosomes).

View Article and Find Full Text PDF
Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!