Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150305 | PMC |
http://dx.doi.org/10.1098/rstb.2013.0530 | DOI Listing |
BMC Psychiatry
January 2025
West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
The current DSM-oriented diagnostic paradigm has introduced the issue of heterogeneity, as it fails to account for the identification of the neurological processes underlying mental illnesses, which affects the precision of treatment. The Research Domain Criteria (RDoC) framework serves as a recognized approach to addressing this heterogeneity, and several assessment and translation techniques have been proposed. Among these methods, transforming RDoC scores from electronic medical records (EMR) using Natural Language Processing (NLP) has emerged as a suitable technique, demonstrating clinical effectiveness.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.
Deep learning models have shown promise in diagnosing neurodevelopmental disorders (NDD) like ASD and ADHD. However, many models either use graph neural networks (GNN) to construct single-level brain functional networks (BFNs) or employ spatial convolution filtering for local information extraction from rs-fMRI data, often neglecting high-order features crucial for NDD classification. We introduce a Multi-view High-order Network (MHNet) to capture hierarchical and high-order features from multi-view BFNs derived from rs-fMRI data for NDD prediction.
View Article and Find Full Text PDFBrain Imaging Behav
January 2025
Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China.
This study investigates post-stroke cognitive impairment (PSCI) by utilizing spectral dynamic causal modeling (spDCM) to examine changes in effective connectivity (EC) within the default mode, executive control, dorsal attention, and salience networks. Forty-one PSCI patients and 41 demographically matched healthy controls underwent 3D-T1WI and resting-state functional magnetic resonance imaging on a 3.0T MRI.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
In the field of medical imaging, particularly MRI-based brain tumor classification, we propose an advanced convolutional neural network (CNN) leveraging the DenseNet-121 architecture, enhanced with dilated convolutional layers and Squeeze-and-Excitation (SE) networks' attention mechanisms. This novel approach aims to improve upon state-of-the-art methods of tumor identification. Our model, trained and evaluated on a comprehensive Kaggle brain tumor dataset, demonstrated superior performance over established convolution-based and transformer-based models: ResNet-101, VGG-19, original DenseNet-121, MobileNet-V2, ViT-L/16, and Swin-B across key metrics: F1-score, accuracy, precision, and recall.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China.
At least 227 combinations of symptoms meet the criteria for Major Depressive Disorder (MDD). However, in clinical practice, patients consistently present symptoms in a regular rather than random manner, and the neural basis underlying the MDD subtypes remains unclear. To help clarify the neural basis, patients with MDD were clustered by symptom combinations to investigate the neural underpinning of each subtype using functional resonance imaging (fMRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!