A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency. | LitMetric

From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.

Philos Trans R Soc Lond B Biol Sci

Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

Published: October 2014

The connectome, or the entire connectivity of a neural system represented by a network, ranges across various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether the connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of Caenorhabditis elegans and the fibre tract network of human brains obtained through diffusion spectrum imaging. We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of both C. elegans and human connectomes are higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution, and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in the C. elegans connectome or each region of interest in the human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared with the alternative arrangements. This implies that fewer genes are needed to encode for the organization of neural systems. While the first two findings show that the neural topologies are efficient in information processing, this suggests that they are also efficient from a developmental point of view. Together, these results show that neural systems are organized in such a way as to yield efficient features beyond those given by their modularity alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150304PMC
http://dx.doi.org/10.1098/rstb.2013.0529DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
elegans human
8
human connectome
8
fibre tract
8
networks fully
8
fully explained
8
explained modularity
8
benchmark networks
8
neural networks
8
clustering coefficient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!