Inspiring careers in STEM and healthcare fields through medical simulation embedded in high school science education.

Adv Physiol Educ

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Anaesthesia Department, Harvard Medical School, Boston, Massachusetts; Gilbert Program in Medical Simulation, Harvard Medical School, Boston, Massachusetts; and

Published: September 2014

The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P < .05). Students in this modest sample overwhelmingly attributed elevated and enduring levels of impact on their interest and confidence in pursuing a science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154261PMC
http://dx.doi.org/10.1152/advan.00143.2013DOI Listing

Publication Analysis

Top Keywords

high school
16
school science
8
medical school
8
school
7
science
6
high
5
inspiring careers
4
careers stem
4
stem healthcare
4
healthcare fields
4

Similar Publications

Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.

View Article and Find Full Text PDF

Purpose: This cross-sectional study explored how the speechreading ability of adults with hearing impairment (HI) in China would affect their perception of the four Mandarin Chinese lexical tones: high (Tone 1), rising (Tone 2), falling-rising (Tone 3), and falling (Tone 4). We predicted that higher speechreading ability would result in better tone performance and that accuracy would vary among individual tones.

Method: A total of 136 young adults with HI (ages 18-25 years) in China participated in the study and completed Chinese speechreading and tone awareness tests.

View Article and Find Full Text PDF

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!