A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. | LitMetric

AI Article Synopsis

  • Leishmania parasites adapt to significantly different environments, requiring survival mechanisms for both sandflies and mammals.
  • The transition to mammalian temperatures triggers vital life cycle changes, including the production of heat shock proteins necessary for survival in higher temperatures.
  • The study identifies the small heat shock protein HSP23 as critical for the survival and infectivity of Leishmania donovani at mammalian temperatures, with its absence leading to increased stress sensitivity and non-viability.

Article Abstract

Leishmania parasites must survive and proliferate in two vastly different environments - the guts of poikilothermic sandflies and the antigen-presenting cells of homeothermic mammals. The change of temperature during the transmission from sandflies to mammals is both a key trigger for the progression of their life cycle and for elevated synthesis of heat shock proteins, which have been implicated in their survival at higher temperatures. Although the functions of the main heat shock protein families in the Leishmania life cycle have been studied, nothing is known about the roles played by small heat shock proteins. Here, we present the first evidence for the pivotal role played by the Leishmania donovani 23-kDa heat shock protein (which we called HSP23), which is expressed preferentially during the mammalian stage where it assumes a perinuclear localisation. Loss of HSP23 causes increased sensitivity to chemical stressors and renders L. donovani non-viable at 37°C. Consequently, HSP23-null mutants are non-infectious to primary macrophages in vitro. All phenotypic effects could be abrogated by the introduction of a functional HSP23 transgene into the null mutant, confirming the specificity of the mutant phenotype. Thus, HSP23 expression is a prerequisite for L. donovani survival at mammalian host temperatures and a crucial virulence factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215717PMC
http://dx.doi.org/10.1242/jcs.157297DOI Listing

Publication Analysis

Top Keywords

heat shock
20
shock protein
12
small heat
8
leishmania donovani
8
life cycle
8
shock proteins
8
shock
5
protein essential
4
essential thermotolerance
4
thermotolerance intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!