A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Broadband optical cooling of molecular rotors from room temperature to the ground state. | LitMetric

Broadband optical cooling of molecular rotors from room temperature to the ground state.

Nat Commun

Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Ilinois 60208, USA.

Published: September 2014

Laser cycling of resonances can remove entropy from a system via spontaneously emitted photons, with electronic resonances providing the fastest cooling timescales because of their rapid spontaneous relaxation. Although atoms are routinely laser-cooled, even simple molecules pose two interrelated challenges for cooling: every populated rotational-vibrational state requires a different laser frequency, and electronic relaxation generally excites vibrations. Here we cool trapped AlH(+) molecules to their ground rotational-vibrational quantum state using an electronically exciting broadband laser to simultaneously drive cooling resonances from many different rotational levels. Undesired vibrational excitation is avoided because of vibrational-electronic decoupling in AlH(+). We demonstrate rotational cooling on the 140(20) ms timescale from room temperature to 3.8(-0.3)(+0.9) K, with the ground-state population increasing from ~3 to 95.4(-2.1)(+1.3)%. This cooling technique could be applied to several other neutral and charged molecular species useful for quantum information processing, ultracold chemistry applications and precision tests of fundamental symmetries.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms5783DOI Listing

Publication Analysis

Top Keywords

room temperature
8
cooling
6
broadband optical
4
optical cooling
4
cooling molecular
4
molecular rotors
4
rotors room
4
temperature ground
4
ground state
4
state laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!