Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes.

J Am Chem Soc

Department of Chemistry and Biochemistry, §Materials Department, #Materials Research Laboratory, and ∇Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, United States.

Published: October 2014

This contribution reports a series of anionic narrow-band-gap self-doped conjugated polyelectrolytes (CPEs) with π-conjugated cyclopenta-[2,1-b;3,4-b']-dithiophene-alt-4,7-(2,1,3-benzothiadiazole) backbones, but with different counterions (Na(+), K(+), vs tetrabutylammonium) and lengths of alkyl chains (C4 vs C3). These materials were doped to provide air-stable, water-soluble conductive materials. Solid-state electrical conductivity, thermopower, and thermal conductivity were measured and compared. CPEs with smaller counterions and shorter side chains exhibit higher doping levels and form more ordered films. The smallest countercation (Na(+)) provides thin films with higher electrical conductivity, but a comparable thermopower, compared to those with larger counterions, thereby leading to a higher power factor. Chemical modifications of the pendant side chains do not influence out of plane thermal conductivity. These studies introduce a novel approach to understand thermoelectric performance by structural modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja504284rDOI Listing

Publication Analysis

Top Keywords

conjugated polyelectrolytes
8
electrical conductivity
8
thermal conductivity
8
side chains
8
conductivity
5
side-chain effects
4
effects conductivity
4
conductivity morphology
4
morphology thermoelectric
4
thermoelectric properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!