AI Article Synopsis

Article Abstract

Objectives: To describe the tissue reactions at the bone-titanium interface of orthodontic miniplates in humans.

Materials And Methods: Forty-two samples, consisting of tissue fragments attached or not to miniplates or their fixation screws, were collected from 24 orthodontic patients treated with miniplate anchorage, at the time of removal of their miniplates. The samples were embedded in methylmethacrylate and cut into undecalcified sections which were submitted to microradiographic analysis. The sections were also stained and examined under ordinary light.

Results: Three types of reactions were observed both on the histological sections and on the microradiographs. 1. The majority of the stable miniplates were easy to remove (34/42). The tissue samples collected consisted mainly in mature lamellar bone with some medullary spaces containing blood vessels, 2. two screws were highly osseointegrated and required the surgeon to remove them by trephining (2/42). They were surrounded by bone tissue which extended to the miniplate. The histological features were similar to the previous group, though the bone-screw contact was higher, and 3. in six samples obtained after unstable miniplate removal during the treatment, we observed either some woven bone trabeculae or loose connective tissue, without any histological sign of inflammation.

Limitations And Conclusion: For evident ethical reasons, our data were limited by the size of the tissue fragments and the limited number of patients and variety of clinical presentations. The healing reactions consisted mainly in mature lamellar bone tissue sparsely in contact with the screw or the miniplate, with signs of a moderate remodelling activity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ejo/cju051DOI Listing

Publication Analysis

Top Keywords

interface orthodontic
8
orthodontic miniplates
8
tissue fragments
8
consisted mature
8
mature lamellar
8
lamellar bone
8
bone tissue
8
tissue
7
miniplates
5
microradiographic histological
4

Similar Publications

The aim of this study was to assess the effect of a chlorhexidine digluconate solution (CHX) applied as an antiproteolytic agent for controlling erosive tooth wear or as part of the adhesive treatment on long-term bond strength to eroded dentin. Dentin specimens were abraded with a 600-grit silicon carbide (SiC) paper for 1 min (sound dentin - S), subsequently treated with 2% CHX for 1 min (with excess removed, followed by a 6-hour rest), and eroded by exposure to Coca-Cola for 5 min, three times a day, for 5 days (CHX-treated and eroded dentin - CHXE), or only eroded (eroded dentin - E). The specimens were acid-etched (15 s), rinsed (30 s), dried (15 s), and rehydrated with 1.

View Article and Find Full Text PDF

Background: This study aimed to comparatively evaluate the effects of different cavity conditioners on internal adaptation (IA) of glass ionomer-based restorative materials applied to primary teeth.

Methods: 80 extracted primary second molar teeth were randomly assigned to four different cavity conditioner groups [10% polyacrylic acid, 20% polyacrylic acid, 17% ethylene diamine tetraacetic acid (EDTA), 35% phosphoric acid]. Class V cavities were prepared on the buccal surfaces and relevant cavity conditioners were applied, and the samples in each cavity conditioner group were randomly assigned to glass hybrid (GHR) or conventional glass ionomer restoratives (CGIR).

View Article and Find Full Text PDF

Enhancement of Osseointegration via Endogenous Electric Field by Regulating the Charge Microenvironments around Implants.

Adv Healthc Mater

January 2025

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an, 710004, China.

The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4).

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the effect of functional loading on microgaps and microleakage at implant-abutment interfaces (IAIs) in the aesthetic zone when using different abutments and to provide a clinical reference for abutment selection.

Methods: This study included 30 patients with 36 implants divided into three groups: zirconia (Zr)-one-piece custom abutment, titanium (Ti)-custom abutment, and Ti-original abutment. Scanning electron microscopy was used to examine alterations in the microgaps at the IAIs under functional loading.

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!