Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298427 | PMC |
http://dx.doi.org/10.1111/imm.12376 | DOI Listing |
Front Immunol
December 2024
Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
The gut microbiota influences the reactivity of the immune system, and has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses.
View Article and Find Full Text PDFMicrob Genom
December 2024
Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, Netherlands.
is a Gram-positive opportunistic pathogen causing systemic disease in piglets around weaning age. The factors predisposing to disease are not known. We hypothesized that the tonsillar microbiota might influence disease risk via colonization resistance and/or co-infections.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
Purpose: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by environmental triggers, including the commensal microbiota. Recent research has highlighted distinctive features of the gut microbiota in RA patients. This study investigates the therapeutic potential of berberine (BBR), a gut microbiota modulator known for its significant anti-RA effects, and elucidates the underlying mechanisms.
View Article and Find Full Text PDFMol Ecol
January 2025
Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA.
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis).
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.
Unlabelled: There is growing interest in members of the genus (family ) as members of a well-balanced human gut microbiota (HGM). are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in species is currently incomplete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!