MicroRNA-34 family expression in bovine gametes and preimplantation embryos.

Reprod Biol Endocrinol

Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Canada.

Published: September 2014

Background: Oocyte fertilization and successful embryo implantation are key events marking the onset of pregnancy. In sexually reproducing organisms, embryogenesis begins with the fusion of two haploid gametes, each of which has undergone progressive stages of maturation. In the final stages of oocyte maturation, minimal transcriptional activity is present and regulation of gene expression occurs primarily at the post-transcriptional level. MicroRNAs (miRNA) are potent effectors of post-transcriptional gene silencing and recent evidence demonstrates that the miR-34 family of miRNA are involved in both spermatogenesis and early events of embryogenesis.

Methods: The profile of miR-34 miRNAs has not been characterized in gametes or embryos of Bos taurus. We therefore used quantitative reverse transcription PCR (qRT-PCR) to examine this family of miRNAs: miR-34a, -34b and -34c as well as their precursors in bovine gametes and in vitro produced embryos. Oocytes were aspirated from antral follicles of bovine ovaries, and sperm cells were isolated from semen samples of 10 bulls with unknown fertility status. Immature and in vitro matured oocytes, as well as cleaved embryos, were collected in pools. Gametes, embryos and ovarian and testis tissues were purified for RNA.

Results: All members of the miR-34 family are present in bovine spermatozoa, while only miR-34a and -34c are present in oocytes and cleaved (2-cell) embryos. Mir-34c demonstrates variation among different bulls and is consistently expressed throughout oocyte maturation and in the embryo. The primary transcript of the miR-34b/c bicistron is abundant in the testes and present in ovarian tissue but undetectable in oocytes and in mature spermatozoa.

Conclusions: The combination of these findings suggest that miR-34 miRNAs may be required in developing bovine gametes of both sexes, as well as in embryos, and that primary miR-34b/c processing takes place before the completion of gametogenesis. Individual variation in sperm miR-34 family abundance may offer potential as a biomarker of male bovine fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162940PMC
http://dx.doi.org/10.1186/1477-7827-12-85DOI Listing

Publication Analysis

Top Keywords

bovine gametes
12
mir-34 family
12
oocyte maturation
8
mir-34 mirnas
8
gametes embryos
8
embryos
7
bovine
6
gametes
6
mir-34
5
microrna-34 family
4

Similar Publications

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Classical preimplantation embryo culture is performed in static fluid environments. Whether a dynamic fluid environment, like the fallopian tube, is beneficial for embryo development remains to be determined across mammalian species. Objectives of these proof-of-concept studies were to determine if controllable dynamic microfluidic culture would enhance preimplantation murine, bovine, and human embryo development compared to static culture.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!