Microwave-assisted synthesis of surface-enhanced Raman scattering nanoprobes for cellular sensing.

Colloids Surf B Biointerfaces

Department of Biomedical Engineering, McGill University, 3773 University, Montréal, QC, Canada H3A 2B6; Faculty of Dentistry, McGill University, 3640 University, Montréal, QC, Canada H3A 0C7. Electronic address:

Published: October 2014

The fabrication of 4-mercaptobenzoic acid (4-MBA) antibody-functionalized gold nanoparticles via microwave technology for surface-enhanced Raman scattering (SERS)-based cellular nanosensing is reported. Nanoprobes were characterized by UV-vis absorbance, Raman scattering properties, and observed by TEM imaging. Results showed that microwave irradiation rapidly yielded nanoprobes with significant Raman scattering intensity and suitable stability to support antibody conjugation in under 10min. Functionalized nanoprobes demonstrated the ability to map the expression of vascular adhesion molecule-1 (VCAM-1) in human coronary artery endothelial (HCAE) cells, indicating that microwave fabrication presents a viable and rapid approach to SERS nanoprobe construction. The successful application of SERS nanoprobes to localize biomarker expression in vitro may ultimately be used for early diagnostic and preventative functions in medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.07.040DOI Listing

Publication Analysis

Top Keywords

raman scattering
16
surface-enhanced raman
8
nanoprobes
5
microwave-assisted synthesis
4
synthesis surface-enhanced
4
raman
4
scattering
4
scattering nanoprobes
4
nanoprobes cellular
4
cellular sensing
4

Similar Publications

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Ergothioneine (ERG) is a natural sulfur-containing amino acid found in many organisms, including humans. It accumulates at high concentrations in red blood cells and is distributed to various organs, including the brain. ERG has numerous health benefits and antioxidant capabilities, and it has been linked to various human physiological processes, such as anti-inflammatory, neuroprotective, and anti-aging effects.

View Article and Find Full Text PDF

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.

View Article and Find Full Text PDF

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!