The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258170 | PMC |
http://dx.doi.org/10.1111/evo.12517 | DOI Listing |
J Eukaryot Microbiol
January 2025
Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
The globally distributed ciliate Balanion planctonicum is a primary consumer of phytoplankton spring blooms. Due to its small size (~20 μm), identification and quantification by molecular tools is preferable as an alternative to the laborious counting of specimen in quantitative protargol stains. However, previous sequencing of the 18S rDNA V9 region of B.
View Article and Find Full Text PDFNOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The and NLRs in are highly polymorphic incompatibility genes ( genes) whose products recognize different alleles of the gene via a sensor domain composed of WD40 repeats.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biological Science, University of Ulsan, Ulsan, Republic of South Korea.
The genus , a group of ciliated protists, has attracted attention as a model organism due to its widespread distribution and ease of cultivation. This study examines the evolutionary patterns of the SSU rRNA secondary structure within this genus, aiming to elucidate its role in supporting evolutionary relationships and uncovering cryptic species. By predicting the secondary structure of SSU rRNA and applying the CBC (Compensatory Base Change) concept analysis, we examined 69 species of the genus , with 57 SSU rRNA gene sequences retrieved from GenBank and 12 newly sequenced specimens from South Korea.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!