Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantitative studies of soft X-ray induced radiation damage in zone-plate-based X-ray microspectroscopy have so far concentrated on investigations of homogeneous specimens. However, more complex materials can show unexpected radiation-induced behaviour. Here a quantitative radiochemical analysis of biological tissue from Xantophan morganii praedicta eyes is presented. Contrast enhancement due to tissue selective mass loss leading to a significant improvement of imaging quality is reported. Since conventional quantitative analysis of the absorbed dose cannot conclusively explain the experimental observations on photon-energy-dependent radiation damage, a significant contribution of photo- and secondary electrons to soft matter damage for photon energies above the investigated absorption edge is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S1600577514013940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!