In order to improve the transfection efficiency (TE) and biocompatibility, we synthesized a series of hyperbranched cationic polymers by ring-opening polymerization between diepoxide and several polyamines. These materials can condense plasmid DNA efficiently into nanoparticles that have much lower cytotoxicity than those derived from bPEI. In vitro transfection experiments showed that polymers prepared from branched or cyclic polyamine (P1 and P5) exhibited TE several times higher than 25KDa bPEI. More significantly, serum seemed to have no negative effect on P1-P5 mediated transfection. On the contrary, the TE of P1 improved, even when the serum concentration reached 70%. Several assays demonstrated the excellent serum tolerance of such polycationic vectors: bovine serum albumin (BSA) adsorption assay revealed considerably lower protein adsorption of P1-P5 than PEI; P1 showed better DNA protection ability from degradation by DNase I than PEI; flow cytometry results suggested that any concentration of serum may not decrease the cellular uptake of P1/DNA polyplex; and confocal laser scanning microscopy also found that serum has little effect on the transfection. By using specific cellular uptake inhibitors, we found that the polyplexes enter the cells mainly via caveolae and microtubule-mediated pathways. We believe that this ring-opening polymerization may be an effective synthetic approach toward gene delivery materials with high biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am5046185 | DOI Listing |
Langmuir
December 2024
Department of Chemistry, Carnegie Mellon University, 4400 Avenue, Pittsburgh, Pennsylvania 15213, United States.
Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:
Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada.
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, Songling Road 189., 266101, Qingdao, CHINA.
The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.
View Article and Find Full Text PDFChemSusChem
December 2024
University of Ottawa, Department of Chemical and Biological Engineering, CANADA.
The ring-opening polymerization of bio-based monomer 2-methylene-1,3-dioxepane (MDO) can reportedly enhance polymer degradability. Butyl acrylate (BA)/MDO/vinyl acetate (VAc) terpolymers were synthesized via emulsion polymerization for their eventual application as pressure-sensitive adhesives (PSAs). While using MDO in emulsion polymerization leads to a more sustainable process, it also presents challenges such as MDO hydrolysis, MDO ring retention, and inadequate MDO distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!