The synthesis and bio-evaluation of naturally occurring boswellic acids (BAs) as an alternate CAP for the design of new HDAC inhibitors is described. All the compounds were screened against a panel of human cancer cell lines to identify leads, which were subsequently examined for their potential to inhibit HDACs. The identified lead compound showed IC50 value of 6μm for HDACs, found to induce G1 cell cycle arrest at significantly low concentration (1μM) and caused significant loss in mitochondrial membrane potential at 5 and 10μM. Furthermore, specific interactions of the lead molecule inside the catalytic domain were also studied through in silico molecular modeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2014.08.007 | DOI Listing |
Mol Cell Proteomics
January 2025
State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China. Electronic address:
Understanding dysregulated genes and pathways in cancer is critical for precision oncology. Integrating mass spectrometry-based proteomic data with transcriptomic data presents unique opportunities for systematic analyses of dysregulated genes and pathways in pan-cancer. Here, we compiled a comprehensive set of datasets, encompassing proteomic data from 2,404 samples and transcriptomic data from 7,752 samples across 13 cancer types.
View Article and Find Full Text PDFSci Rep
January 2025
The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Pharmacy, Guru Ghasidas University, Bilaspur, India.
Introduction: The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential.
Areas Covered: The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.
J Med Chem
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China.
Histone deacetylase 3 (HDAC3) is a well-established target for cancer therapy. Herein, we developed as a novel HDAC3 inhibitor, which exhibited high HDAC3 inhibitory activity (IC = 42 nM, SI > 161) and displayed potent antiproliferative activity against four cancer cells and further demonstrated excellent antimigratory, anti-invasive, and antiwound healing activities. Further studies revealed that induced a dose-dependent increase in Ac-H3 expression and promoted the degradation of PD-L1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!