A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts. | LitMetric

The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

Biomaterials

Division of Plastic and Reconstructive Surgery, University of Alberta, 2D3.81 WMSHC, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada; Critical Care Medicine, University of Alberta, 2D3.81 WMSHC, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada. Electronic address:

Published: December 2014

Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2014.07.048DOI Listing

Publication Analysis

Top Keywords

tissue engineered
32
engineered skin
32
fibroblasts keratinocytes
20
skin deep
16
deep fibroblasts
16
biomechanical characteristics
12
characteristics pore
12
pore microstructure
12
microstructure tissue
12
deep dermal
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!