Endoplasmic reticulum (ER) stress is an emerging potential therapeutic target for metabolic syndrome due to its role in synthesis, secretion, and folding of proteins. It leads to an increased production of reactive oxygen species (ROS) which, along with mitochondrial dysfunction and reduced antioxidant defense, causes chronic cell injury. The present investigation aims to observe the alterations in adipocytes due to ER stress and the protective effect of hydroxycitric acid (HCA), a bioactive from Garcinia species, to develop the same as a nutraceutical. ER stress was induced in mature 3T3-L1 adipocytes by treating them with tunicamycin (2μg/ml) for 18 h. Alterations in cell viability, innate antioxidant system (superoxide dismutase, glutathione peroxidase, and glutathione reductase), mitochondria (membrane potential, biogenesis, and transition pore opening), and inflammatory cytokines (tumor necrosis factor, monocyte chemoattractant protein, interferon-γ, interleukin (IL)-10, IL-6, and IL-1β) during ER stress, and co-treatment with HCA were analyzed. Endocrine function of adipocytes was also assessed by measuring adiponectin and leptin secretion levels. HCA protected the cells from ER stress by improving the antioxidant status and mitochondrial functions. The results validate nutraceutical properties of the edible bioactive, commonly used for culinary purpose. A more detailed study on the mechanism of action of HCA is required for developing it as a therapeutic agent for metabolic syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10715762.2014.959514DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
3t3-l1 adipocytes
8
metabolic syndrome
8
stress
5
--hydroxycitric acid
4
acid attenuates
4
attenuates endoplasmic
4
reticulum stress-mediated
4
stress-mediated alterations
4
alterations 3t3-l1
4

Similar Publications

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.

Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.

View Article and Find Full Text PDF

polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling.

World J Gastroenterol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.

Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.

Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!