Changing demographics, the rise of personalized medicine and increased identification of biomarkers for diagnosis and management of chronic disease have increased the demand for portable bioanalytical instrumentation and point-of-care. The recent development of molecularly imprinted polymers enables production of low cost and highly stable sensing chips; however, the commercially available and full functional instruments employed for electrochemical analysis have shortcomings in actual homecare applications. In this work, integrated circuits (ICs) for monolithic implementation of voltammeter potentiostat with a large dynamic current range (5 nA to 1.2 mA) and short conversion time (10 ms) were fabricated in a 0.35 μm complementary metal-oxide-semiconductor (CMOS) process. The new instrumentation was tested with molecular imprinted sensors for 3-hydroxyanthranilic acid (3HAA) in urine. The sensor consisted of molecular imprinted of poly(ethylene-co-vinyl alcohol)s (abbreviated as EVALs) for implementation in a flow injection analysis system. The EVAL containing 32 ethylene mol% had the highest imprinting effectiveness for the target molecules. Fit-for-purpose figures of merit were achieved with a limit-of-detection (LOD) of 3.06 pg/mL. The measurements obtained in real undiluted urine samples fell within the reference concentration range of 50-550 ng/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2014.08.018DOI Listing

Publication Analysis

Top Keywords

3-hydroxyanthranilic acid
8
molecularly imprinted
8
imprinted polyethylene-co-vinyl
8
molecular imprinted
8
integrated potentiostat
4
potentiostat electrochemical
4
electrochemical sensing
4
sensing urinary
4
urinary 3-hydroxyanthranilic
4
acid molecularly
4

Similar Publications

3-Hydroxyanthranic acid inhibits growth of oral squamous carcinoma cells through growth arrest and DNA damage inducible alpha.

Transl Oncol

February 2025

Shanghai Ninth People's Hospital, Department of Clinical Laboratory medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China. Electronic address:

Objectives: The specific role of 3-hydroxyanthranilic acid(3-HAA) in oral squamous cell carcinoma (OSCC) remains unclear. This study investigated the roles of 3-HAA in OSCC and the underlying mechanism.

Materials And Methods: The effects of 3-HAA on OSCC were examined using CCK-8, colony formation, EdU incorporation assays and xenograft mouse model.

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising therapy for irritable bowel syndrome (IBS). The aims of this clinical trial were to evaluate the influence of taVNS on autonomic functions, rectal sensation, and acetylcholine (Ach) levels and to explore potential mechanisms involving gut microbiota and metabolic profiles.

Methods: This study was a single-center, single-blind, randomized controlled trial executed at the First Affiliated Hospital of USTC, Anhui, China.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is among the most malignant tumors, with the lowest five-year survival rate, and limited treatment options. Kynureninase (KYNU), is a key molecule in tryptophan metabolism and promotes tumor progression and immunosuppression. Cuproptosis is a non-apoptotic cell death mechanism, primarily due to oxidative stress caused by copper ion accumulation, that is related to tumor progression and drug resistance.

View Article and Find Full Text PDF

Aims: Chronic hypobaric hypoxia frequently results in memory deficits, with severe cases showing marked alterations in dopamine levels and its metabolites. This research explores caffeine's modulation of the adenosine AA receptor (AAR) and its regulatory effects on tyrosine hydroxylase (TH), aiming to restore dopamine homeostasis and mitigate memory impairments associated with hypoxia. The goal is to identify novel preventive strategies against cognitive decline induced by hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!