Indirubin is an active ingredient mainly used to treat leukemia in China and is reported to be a leading inhibitor of cyclindependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) by competing with ATP binding sites. New findings have indicated that its comprehensive structure may contribute to its polypharmacological activities particularly in cancer and neurodegenerative disease therapy, as both of these diseases are usually accompanied by a common molecular link related to abnormal phosphorylation of CDKs and GSK-3. In the elderly, cancer and neurodegenerative disease are tightly associated common diseases and sometimes unavoidably coexist. In this review, the underlying mechanisms of the dual actions of indirubin and its structurally-related compounds in cancer and neurodegenerative disease therapy are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520614666140825112924 | DOI Listing |
Immunol Res
January 2025
, Auckland, New Zealand.
Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.
Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.
Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India.
AI-optimized electrochemical aptasensors are transforming diagnostic testing by offering high sensitivity, selectivity, and rapid response times. Leveraging data-driven AI techniques, these sensors provide a non-invasive, cost-effective alternative to traditional methods, with applications in detecting molecular biomarkers for neurodegenerative diseases, cancer, and coronavirus. The performance metrics outlined in the comparative table illustrate the significant advancements enabled by AI integration.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea.
Neuroinflammation, a significant contributor to various neurodegenerative diseases, is strongly associated with the aging process; however, to date, no efficacious treatments for neuroinflammation have been developed. In aged mouse brains, the number of infiltrating immune cells increases, and the key transcription factor associated with increased chemokine levels is nuclear factor kappa B (NF-κB). Exosomes are potent therapeutics or drug delivery vehicles for various materials, including proteins and regulatory genes, to target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!