SH2B1 increases the numbers of IRSp53-induced filopodia.

Biochim Biophys Acta

Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC. Electronic address:

Published: December 2014

Background: Filopodia are actin-rich membrane protrusions that play instrumental roles in development, cell migration, pathogen detection, and wound healing. During neurogenesis, filopodium formation precedes the formation of dendrites and spines. The insulin receptor substrate protein of 53kDa (IRSp53) has been implicated in regulating the formation of filopodia. Our previous results suggest that a signaling adaptor protein SH2B1β is required for neurite outgrowth of hippocampal neurons and neurite initiation of PC12 cells. Thus, we hypothesize that IRSp53 and SH2B1β may act together to regulate filopodium formation.

Methods: To determine the contribution of IRSp53 and SH2B1β in the formation of filopodia, we transiently transfect IRSp53 and/or SH2B1β to 293T cells. Cell morphology and protein distribution are assessed via confocal microscopy and subcellular fractionation. Total numbers of filopodia and filopodium numbers per perimeter are calculated to show the relative contribution of IRSp53 and SH2B1β.

Results: In this study, we show that SH2B1β interacts with IRSp53 and increases the number of IRSp53-induced filopodia. One mechanism for this enhancement is that IRSp53 recruits SH2B1β to the plasma membrane to actively promote membrane protrusion. The increased numbers of filopodia likely result from SH2B1-mediated cytoplasmic extension and thus increased cell perimeter as well as IRSp53-mediated filopodium formation.

Conclusions: Taken together, this study provides a novel finding that SH2B1β interacts with IRSp53-containing complexes to increase the number of filopodia.

General Significance: A better understanding of how SH2B1β and IRSp53 promote filopodium formation may have clinical implication in neurogenesis and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2014.08.011DOI Listing

Publication Analysis

Top Keywords

irsp53-induced filopodia
8
filopodium formation
8
irsp53
8
formation filopodia
8
sh2b1β
8
irsp53 sh2b1β
8
contribution irsp53
8
numbers filopodia
8
sh2b1β interacts
8
filopodia
7

Similar Publications

SH2B1 increases the numbers of IRSp53-induced filopodia.

Biochim Biophys Acta

December 2014

Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC. Electronic address:

Background: Filopodia are actin-rich membrane protrusions that play instrumental roles in development, cell migration, pathogen detection, and wound healing. During neurogenesis, filopodium formation precedes the formation of dendrites and spines. The insulin receptor substrate protein of 53kDa (IRSp53) has been implicated in regulating the formation of filopodia.

View Article and Find Full Text PDF

In this study, insulin receptor substrate (IRS) p53 is identified as a binding partner for Kank, a kidney ankyrin repeat-containing protein that functions to suppress cell proliferation and regulate the actin cytoskeleton. Kank specifically inhibits the binding of IRSp53 with active Rac1 (Rac1(G12V)) but not Cdc42 (cdc42(G12V)) and thus inhibits the IRSp53-dependent development of lamellipodia without affecting the formation of filopodia. Knockdown (KD) of Kank by RNA interference results in increased lamellipodial development, whereas KD of both Kank and IRSp53 has little effect.

View Article and Find Full Text PDF

The Cdc42 effector IRSp53 is a strong inducer of filopodia formation and consists of an Src homology domain 3 (SH3), a potential WW-binding motif, a partial-Cdc42/Rac interacting binding region motif, and an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain. We show that IRSp53 interacts directly with neuronal Wiskott-Aldrich syndrome protein (N-WASP) via its SH3 domain and furthermore that N-WASP is required for filopodia formation as IRSp53 failed to induce filopodia formation in N-WASP knock-out (KO) fibroblasts. IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts by full-length N-WASP, by N-WASPDeltaWA (a mutant unable to activate the Arp2/3 complex), and by N-WASPH208D (a mutant unable to bind Cdc42).

View Article and Find Full Text PDF

The scaffolding protein insulin receptor tyrosine kinase substrate p53 (IRSp53), a ubiquitous regulator of the actin cytoskeleton, mediates filopodia formation under the control of Rho-family GTPases. IRSp53 comprises a central SH3 domain, which binds to proline-rich regions of a wide range of actin regulators, and a conserved N-terminal IRSp53/MIM homology domain (IMD) that harbours F-actin-bundling activity. Here, we present the crystal structure of this novel actin-bundling domain revealing a coiled-coil domain that self-associates into a 180 A-long zeppelin-shaped dimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!