Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review.

Biochim Biophys Acta

Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Belgium. Electronic address:

Published: December 2014

Plasma membranes are complex entities common to all living cells. The basic principle of their organization appears very simple, but they are actually of high complexity and represent very dynamic structures. The interactions between bioactive molecules and lipids are important for numerous processes, from drug bioavailability to viral fusion. The cell membrane is a carefully balanced environment and any change inflicted upon its structure by a bioactive molecule must be considered in conjunction with the overall effect that this may have on the function and integrity of the membrane. Conceptually, understanding the molecular mechanisms by which bioactive molecules interact with cell membranes is of fundamental importance. Lipid specificity is a key factor for the detailed understanding of the penetration and/or activity of lipid-interacting molecules and of mechanisms of some diseases. Further investigation in that way should improve drug discovery and development of membrane-active molecules in many domains such as health, plant protection or microbiology. In this review, we will present complementary biophysical approaches that can give information about lipid specificity at a molecular point of view. Examples of application will be given for different molecule types, from biomolecules to pharmacological drugs. A special emphasis is given to cyclic lipopeptides since they are interesting molecules in the scope of this review by combining a peptidic moiety and a lipidic tail and by exerting their activity via specific interactions with the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2014.08.023DOI Listing

Publication Analysis

Top Keywords

lipid specificity
12
bioactive molecules
12
complementary biophysical
8
plasma membrane
8
molecules
6
biophysical tools
4
tools investigate
4
investigate lipid
4
specificity interaction
4
bioactive
4

Similar Publications

Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.

Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.

View Article and Find Full Text PDF

Toluene Toxicity in the Brain: From Cellular Targets to Molecular Mechanisms.

Annu Rev Pharmacol Toxicol

January 2025

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; email:

Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders.

View Article and Find Full Text PDF

Digital Health Solutions for Cardiovascular Disease Prevention: Systematic Review.

J Med Internet Res

January 2025

Centre for Research in Media and Communication, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Selangor, Malaysia.

Background: Cardiovascular disease (CVD) is a major global health issue, with approximately 70% of cases linked to modifiable risk factors. Digital health solutions offer potential for CVD prevention; yet, their effectiveness in covering the full range of prevention strategies is uncertain.

Objective: This study aimed to synthesize current literature on digital solutions for CVD prevention, identify the key components of effective digital interventions, and highlight critical research gaps to inform the development of sustainable strategies for CVD prevention.

View Article and Find Full Text PDF

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

To regulate brain function, peripheral compounds must traverse the blood-brain barrier (BBB), an interface between the brain and the circulatory system. To determine whether specific transport mechanisms are relevant for sleep, we conducted a BBB-specific inducible RNAi knockdown (iKD) screen for genes affecting sleep in . We observed reduced sleep with knockdown of solute carrier , a carnitine transporter, as determined by isotope flux.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!