Introduction: Whether red blood cell (RBC) transfusion is beneficial remains controversial. In both retrospective and prospective evaluations, transfusion has been associated with adverse, neutral, or protective effects. These varying results likely stem from a complex interplay between transfusion, patient characteristics, and clinical context. The objective was to test whether age, comorbidities, and clinical context modulate the effect of transfusion on survival.
Methods: By using the multiparameter intelligent monitoring in intensive care II database (v. 2.6), a retrospective analysis of 9,809 critically ill patients, we evaluated the effect of RBC transfusion on 30-day and 1-year mortality. Propensity score modeling and logistic regression adjusted for known confounding and assessed the independent effect of transfusion on 30-day and 1-year mortality. Sensitivity analysis was performed by using 3,164 transfused and non-transfused pairs, matched according the previously validated propensity model for RBC transfusion.
Results: RBC transfusion did not affect 30-day or 1-year mortality in the overall cohort. Patients younger than 55 years had increased odds of mortality (OR, 1.71; P < 0.01) with transfusion. Patients older than 75 years had lower odds of 30-day and 1-year mortality (OR, 0.70; P < 0.01) with transfusion. Transfusion was associated with worse outcome among patients undergoing cardiac surgery (OR, 2.1; P < 0.01). The propensity-matched population corroborated findings identified by regression adjustment.
Conclusion: A complex relation exists between RBC transfusion and clinical outcome. Our results show that transfusion is associated with improved outcomes in some cohorts and worse outcome in others, depending on comorbidities and patient characteristics. As such, future investigations and clinical decisions evaluating the value of transfusion should account for variations in baseline characteristics and clinical context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174663 | PMC |
http://dx.doi.org/10.1186/s13054-014-0487-z | DOI Listing |
Background: Pelvic fractures often result in traumatic and intraoperative blood loss. Cell salvage (CS) is a tool where autologous blood lost during surgery is collected and recycled with anticoagulation, centrifugation to separate red blood cells, and washing to be reinfused back to the patient. The purpose of this study was to investigate our experience with CS in pelvic and acetabular surgery and its relationship to perioperative transfusion requirements.
View Article and Find Full Text PDFTransfusion
January 2025
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Neonates with congenital anomalies frequently require perioperative allogeneic red blood cell (RBC) transfusion. Whole cord blood for autologous transfusion to neonates may provide an alternative RBC source, but whether sufficient volumes can be collected after delayed cord clamping to reduce allogeneic RBC requirements is unknown.
Study Design And Methods: Inclusion criteria were mothers delivering a viable infant >34 weeks' gestation.
Background: Transfusion-associated hypotension (TAH) is characterized by the abrupt onset of hypotension immediately after the start of transfusion and usually resolves when transfusion ceases. The pathogenesis of TAH is not yet fully understood.
Methods: A 36-year-old woman underwent exploratory laparotomy and cesarean section due to cervical squamous cell carcinoma.
Transfusion
January 2025
Cerus Corporation, Concord, California, USA.
Background: Although alloimmunization risk of pathogen-reduced (PR) platelets has been studied, the risk has not been reported with PR red blood cells (RBCs).
Study Design And Methods: In a Phase III, randomized, controlled trial (Red Cell Pathogen Inactivation), cardiac or thoracic-aorta surgery patients were randomized to transfusion with amustaline/glutathione PR versus conventional RBCs. Pre-transfusion and Day 28 samples were evaluated for Human leukocyte antigen (HLA) Class I and Class II antibodies at low, medium, and high cutoff values.
Int J Lab Hematol
January 2025
Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China.
Introduction: Accurate platelet (PLT) counting is crucial for disease diagnosis and treatment, especially under the condition of thrombocytopenia and platelet transfusion. A few PLT counting approaches have been established including impedance and fluorescent methods. The impedance PLT counting (PLT-I) approach could be interfered by small non-PLT particles in the blood, such as RBC/WBC fragments, microcytes, bacteria, and cryoglobulins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!