Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis. The silymarin-induced apoptosis of human melanoma cells was associated with a reduction in the levels of anti-apoptotic proteins (Bcl-2 and Bcl-xl), an increase in the levels of pro-apoptotic protein (Bax), and activation of caspases. Further, oral administration of silymarin (500 mg/kg body weight/2× a week) significantly inhibited (60%, P < 0.01) the growth of BRAF-mutated A375 melanoma tumor xenografts, and this was associated with: (i) inhibition of cell proliferation; (ii) induction of apoptosis of tumor cells; (iii) alterations in cell cycle regulatory proteins; and (iv) reduced expression of tumor angiogenic biomarkers in tumor xenograft tissues. These results indicate that silymarin may have a chemotherapeutic effect on human melanoma cell growth and warrant its further evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.22208DOI Listing

Publication Analysis

Top Keywords

melanoma cell
8
cell cycle
8
induction apoptosis
8
melanoma cells
8
human melanoma
8
melanoma
6
cell
5
silymarin
4
silymarin inhibits
4
inhibits melanoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!