Intrinsically water-stable keratin nanoparticles and their in vivo biodistribution for targeted delivery.

J Agric Food Chem

Department of Textiles, Merchandising and Fashion Design, and ∥Department of Biological Systems Engineering, University of Nebraska-Lincoln, 234 Home Economics Building, Lincoln, Nebraska 68583-0802, United States.

Published: September 2014

Highly water-stable nanoparticles of around 70 nm and capable of distributing with high uptake in certain organs of mice were developed from feather keratin. Nanoparticles could provide novel veterinary diagnostics and therapeutics to boost efficiency in identification and treatment of livestock diseases to improve protein supply and ensure safety and quality of food. Nanoparticles could penetrate easily into cells and small capillaries, surpass detection of the immune system, and reach targeted organs because of their nanoscale sizes. Proteins with positive and negative charges and hydrophobic domains enable loading of various types of drugs and, hence, are advantageous over synthetic polymers and carbohydrates for drug delivery. In this research, the highly cross-linked keratin was processed into nanoparticles with diameters of 70 nm under mild conditions. Keratin nanoparticles were found supportive to cell growth via an in vitro study and highly stable after stored in physiological environments for up to 7 days. At 4 days after injection, up to 18% of the cells in kidneys and 4% of the cells in liver of mice were penetrated by the keratin nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf502242hDOI Listing

Publication Analysis

Top Keywords

keratin nanoparticles
16
delivery highly
8
nanoparticles
7
keratin
5
intrinsically water-stable
4
water-stable keratin
4
nanoparticles vivo
4
vivo biodistribution
4
biodistribution targeted
4
targeted delivery
4

Similar Publications

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Serine-modified silver nanoparticle porous spray membrane: A novel approach to wound infection prevention and inflammation reduction.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:

Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.

View Article and Find Full Text PDF

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.

View Article and Find Full Text PDF

Acne is a chronic inflammatory disease of pilosebaceous unit, which can be aggravated by hyperkeratosis of the pilosebaceous unit, excessive secretion of sebum and the proliferation of Propionibacterium acnes (P. acnes). Traditional drug treatment methods commonly exhibit drawbacks, including bacterial resistance and poor transdermal permeability, resulting in suboptimal efficacy and recurrent infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!