Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature13664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!