Small heat shock proteins (sHSPs), as a conserved family of ATP-independent molecular chaperones, are known to bind non-native substrate proteins and facilitate the substrate refolding in cooperation with ATP-dependent chaperones (e.g., DnaK and ClpB). However, how different sHSPs function in coordination is poorly understood. Here we report that IbpA and IbpB, the two sHSPs of Escherichia coli, are coordinated by synchronizing their differential in vivo degradation. Whereas the individually expressed IbpA and IbpB are respectively degraded slowly and rapidly in cells cultured under both heat shock and normal conditions, their simultaneous expression leads to a synchronized degradation at a moderate rate. Apparently, such synchronization is linked to their hetero-oligomerization and cooperation in binding substrate proteins. In addition, truncation of the flexible N- and C-terminal tails dramatically suppresses the IbpB degradation, and somehow accelerates the IbpA degradation. In view of these in vivo data, we propose that the synchronized degradation for IbpA and IbpB are crucial for their synergistic promoting effect on DnaK/ClpB-mediated substrate refolding, conceivably via the formation of IbpA-IbpB-substrate complexes. This scenario may be common for different sHSPs that interact with each other in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.08.084 | DOI Listing |
Iran J Biotechnol
July 2024
Department of Biotechnology, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea.
Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.
View Article and Find Full Text PDFVirology
September 2024
School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia. Electronic address:
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied.
View Article and Find Full Text PDFElife
December 2023
Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdańsk, Poland.
Evolution can tinker with multi-protein machines and replace them with simpler single-protein systems performing equivalent functions in an equally efficient manner. It is unclear how, on a molecular level, such simplification can arise. With ancestral reconstruction and biochemical analysis, we have traced the evolution of bacterial small heat shock proteins (sHsp), which help to refold proteins from aggregates using either two proteins with different functions (IbpA and IbpB) or a secondarily single sHsp that performs both functions in an equally efficient way.
View Article and Find Full Text PDFCell Stress Chaperones
November 2023
Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
Inclusion body-associated proteins IbpA and IbpB of MW 16 KDa are the two small heat-shock proteins (sHSPs) of Escherichia coli, and they have only holding, but not folding, chaperone activity. In vitro holdase activity of IbpB is more than that of IbpA, and in combination, they synergise. Both IbpA and IbpB monomers first form homodimers, which as building blocks subsequently oligomerize to make heavy oligomers with MW of MDa range; for IbpB, the MW range of heavy oligomers is 2.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In , fibrillar IbpA binds unfolded proteins and keeps them in a folding-competent state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!