The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2014.08.039 | DOI Listing |
Sensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Łukasiewicz Research Network-Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland.
The purpose of the experiment was to indicate which element of the production process of flexible printed circuit boards is optimal in terms of the reliability of final products. According to the Taguchi method, in the experiment, five factors with two levels each were chosen for the subsequent analysis. These included the number of conductive layers, the thickness of the laminate layer, the type of the laminate, the diameter of the plated holes, and the current density in the galvanic bath.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Energy & Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea.
Plasma processes are critical for achieving precise device fabrication in semiconductor manufacturing. However, polymer accumulation during processes like plasma etching can cause chamber contamination, adversely affecting plasma characteristics and process stability. This study focused on developing a real-time sensor system for diagnosing chamber contamination by quantitatively monitoring polymer accumulation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!