Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.

Toxicol Sci

The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300

Published: November 2014

The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271064PMC
http://dx.doi.org/10.1093/toxsci/kfu175DOI Listing

Publication Analysis

Top Keywords

dna double
32
double strand
32
strand break
20
break repair
20
strand breaks
12
longer exposures
12
foci formation
12
repair signaling
8
hexavalent chromium
8
rad51 response
8

Similar Publications

Objective: This study evaluated the diagnostic value of plasma Neutrophil extracellular traps (NETs) levels and the index of cardiac electrophysiological balance (iCEB) in identifying silent myocardial ischemia (SMI) in maintenance hemodialysis (MHD) patients.

Methods: This cross-sectional observational study involved patients receiving MHD treatment. Data were collected on coronary angiography performed in our hospital from February 2023 to February 2024.

View Article and Find Full Text PDF

Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.

View Article and Find Full Text PDF

Background: In infertility clinics, long-time preserving high-quality spermatozoa is a challenging problem.

Objective: The present study aimed to prolong preserving of the human spermatozoa by adding pentoxifylline (PT) and L-carnitine (LC) without using high-cost freezing techniques.

Materials And Methods: In this experimental study, semen samples of 26 normozoospermia men aged between 28-34 yr, were firstly prepared using the swim-up technique, and each sample was divided into the following 3 aliquots: untreated control group, the LC, and PT-treated groups.

View Article and Find Full Text PDF

The role of spatial arrangement of aromatic rings on the binding of ,'-diheteroaryl guanidine ligands to the G2C4/G2C4 motif DNA.

Phys Chem Chem Phys

January 2025

Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!