The role of Mg(2+) ion in flavin (flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)) recognition by RNA aptamer has been explored through steady state and time-resolved fluorescence, circular dichroism (CD), thermal melting (TM) and isothermal titration calorimetry (ITC) studies. A strong quenching of flavin emission is detected due to stacking interaction with the nucleobases in the mismatched region of aptamer, and it enhances manifold with increasing Mg(2+) concentrations. A comparatively lower binding affinity toward FAD compared to FMN is attributed to the presence of intramolecular 'stack' conformer of FAD, which cannot participate in the intermolecular stacking interactions with the nucleobases. CD and TM studies predict that flavin detection causes structural reformation of RNA aptamer. ITC results indicate that flavin detection is thermodynamically feasible and highly enthalpy driven.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2014.08.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!