How best to preserve and reveal the structural intricacies of cartilaginous tissue.

Matrix Biol

Departments of Osteoporosis, Orthopaedic Surgery and Clinical Research, Inselspital, University of Bern, Murtenstrasse 35, P.O. Box 54, 3010 Bern, Switzerland.

Published: October 2014

No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them. Adult articular cartilage is taken as a representative pars pro toto of the different bodily types. In mammals, this layer of tissue is a component of the synovial joints, wherein it fulfills crucial and diverse biomechanical functions. The biomechanical functions of articular cartilage have their structural and molecular correlates. During the natural course of postnatal development and after the onset of pathological disease processes, such as osteoarthritis, the tissue undergoes structural changes which are intimately reflected in biomechanical modulations. The fine structural intricacies that subserve the changes in tissue function can be accurately assessed only if they are faithfully preserved at the molecular level. For this reason, a careful consideration of the tissue-processing technique is indispensable. Since, as aforementioned, no single methodological tool is capable of optimally preserving all constituents, the approach must be pre-selected with a targeted structure in view. Guidance in this choice is offered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2014.08.010DOI Listing

Publication Analysis

Top Keywords

structural intricacies
8
cartilaginous tissue
8
capable optimally
8
optimally preserving
8
articular cartilage
8
biomechanical functions
8
structural
5
tissue
5
best preserve
4
preserve reveal
4

Similar Publications

This review synthesizes current research on domestic violence and sexual assault, focusing on their short-term and long-term effects on family dynamics, particularly on the development and well-being of children and adolescents. The article employs a curated body of literature, including surveys, reviews, program evaluations, and international health reports, to elucidate the direct and collateral damage caused by such trauma within families. The review critically examines the intersecting consequences of abuse, including immediate psychological distress and long-term socio-economic and educational disruptions for affected youths.

View Article and Find Full Text PDF

The paradox of the self-studying brain.

Phys Life Rev

January 2025

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; VERSES AI Research Lab, Los Angeles, CA, 90016, USA.

The paradox of a brain trying to study itself presents a conundrum, raising questions about self-reference, consciousness, psychiatric disorders, and the boundaries of scientific inquiry. By which means can this complex organ shift the focus of study towards itself? We aim at unpacking the intricacies of this paradox. Historically, this question has been raised by philosophers under different frameworks.

View Article and Find Full Text PDF

HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.

View Article and Find Full Text PDF

Role of data-driven regional growth model in shaping brain folding patterns.

Soft Matter

January 2025

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.

View Article and Find Full Text PDF

Preliminaries to artificial consciousness: A multidimensional heuristic approach.

Phys Life Rev

January 2025

Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France.

The pursuit of artificial consciousness requires conceptual clarity to navigate its theoretical and empirical challenges. This paper introduces a composite, multilevel, and multidimensional model of consciousness as a heuristic framework to guide research in this field. Consciousness is treated as a complex phenomenon, with distinct constituents and dimensions that can be operationalized for study and for evaluating their replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!