Based on the theoretical analysis of the intense relativistic electron beam propagation in the coaxial drift-tube, a focusing electrode and a coaxial reflector is proposed to lessen the demand of the coaxial Ku-band foilless transit-time oscillator (TTO) for the guiding magnetic field. Moreover, a Ku-band TTO with the focusing electrode and the coaxial reflector is designed and studied by particle in cell simulation. When the diode voltage is 390 kV, the beam current 7.8 kA, and the guiding magnetic field is only 0.3 T, the device can output 820 MW microwave pulse at 14.25 GHz by means of the simulation. However, for the device without them, the output power is only 320 MW. The primary experiments are also carried out. When the guiding magnetic field is 0.3 T, the output power of the device with the focusing electrode and the coaxial reflector is double that of the one without them. The simulation and experimental results prove that the focusing electrode and the coaxial reflector are effective on reducing the guiding magnetic field of the device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4891423 | DOI Listing |
Brain Topogr
January 2025
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India.
High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.
View Article and Find Full Text PDFJ Clin Med
January 2025
Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, 47121 Romagna, Italy.
Endoscopic ultrasound (EUS)-guided radiofrequency ablation (RFA) is a promising minimally invasive technique for the treatment of pancreatic lesions. This review first focuses on the technical aspects in EUS-RFA: the procedure typically employs EUS probes with integrated radiofrequency electrodes, enabling accurate targeting and ablation of pancreatic lesions. Different types of RFA devices, monopolar and bipolar energy delivery systems, are discussed, along with considerations for optimal ablation, including energy settings, procedure time, and pre- and post-procedural management.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.
The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil.
Over the past 15 years, there has been a significant increase in the search for environmentally friendly energy sources, and transition-metal-based energy storage devices are leading the way in these new technologies. Supercapacitors are attractive in this regard due to their superior energy storage capabilities. Electrode materials, which are crucial components of supercapacitors, such as cobalt-oxide-based electrodes, have great qualities for achieving high supercapacitor performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!