Rapid mapping of visual receptive fields by filtered back projection: application to multi-neuronal electrophysiology and imaging.

J Physiol

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK

Published: November 2014

Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo-random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi-electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca(2+) indicator. We find that FBP offers several advantages over the commonly used spike-triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259530PMC
http://dx.doi.org/10.1113/jphysiol.2014.276642DOI Listing

Publication Analysis

Top Keywords

receptive fields
8
filtered projection
8
visual system
8
mapping rfs
8
impulse response
8
bipolar cell
8
rfs
5
fbp
5
rapid mapping
4
visual
4

Similar Publications

MPIC: Exploring alternative approach to standard convolution in deep neural networks.

Neural Netw

December 2024

Institute of Automation, Chinese Academy of Sciences, MAIS, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 101408, China.

In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).

View Article and Find Full Text PDF

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Drone inspections are widely utilized in the detection of insulators in power lines. To address issues with traditional object detection algorithms, such as large parameter counts, low detection accuracy, and high miss rates, this paper proposes an insulator detection algorithm based on an improved YOLOv5 model. Firstly, in the backbone and neck networks, a lightweight CSP-SCConv module is employed to replace the original CSP-Darknet53 module, thereby reducing the parameter count and enhancing the feature extraction capabilities.

View Article and Find Full Text PDF

In order to solve the problem of weak single domain generalization ability in existing crowd counting methods, this study proposes a new crowd counting framework called Multi-scale Attention and Hierarchy level Enhancement (MAHE). Firstly, the model can focus on both the detailed features and the macro information of structural position changes through the fusion of channel attention and spatial attention. Secondly, the addition of multi-head attention feature module facilitates the model's capacity to effectively capture complex dependency relationships between sequence elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!