Recording human cortical population spikes non-invasively--An EEG tutorial.

J Neurosci Methods

Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charite - University Medicine Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Bernstein Focus: Neurotechnology Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Germany. Electronic address:

Published: July 2015

Background: Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs, eventually enabling single-trial analysis.

Methods: The rationale for developing dedicated low-noise EEG technology for sHFOs is unfolded. Detailed recording procedures and tailored analysis principles are explained step-by-step. Source codes in Matlab and Python are provided as supplementary material online.

Results: Combining synergistic hardware and analysis improvements, evoked sHFOs at around 600 Hz ('σ-bursts') can be studied in single-trials. Additionally, optimized spatial filters increase the signal-to-noise ratio of components at about 1 kHz ('κ-bursts') enabling their detection in non-invasive surface EEG.

Conclusions: sHFOs offer a unique possibility to record evoked human cortical population spikes non-invasively. The experimental approaches and algorithms presented here enable also non-specialized EEG laboratories to combine measurements of conventional low-frequency EEG with the analysis of concomitant cortical population spike responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2014.08.013DOI Listing

Publication Analysis

Top Keywords

cortical population
16
human cortical
12
population spikes
12
signal-to-noise ratio
8
eeg
5
shfos
5
analysis
5
recording human
4
cortical
4
population
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!